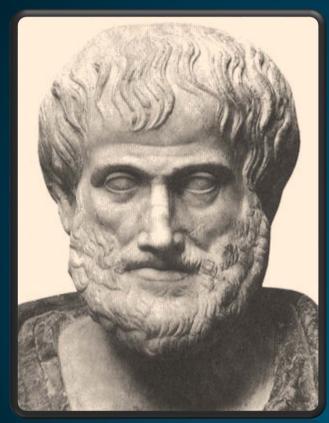
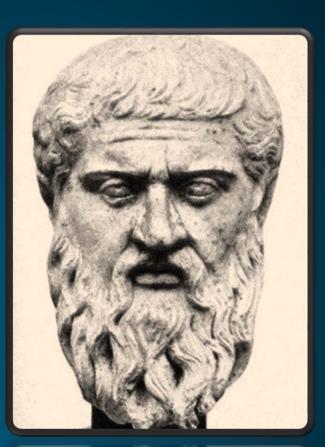
MATHEMATICALTHINKING A guest lecture by Mr. Chase

Is mathematics invented or discovered?

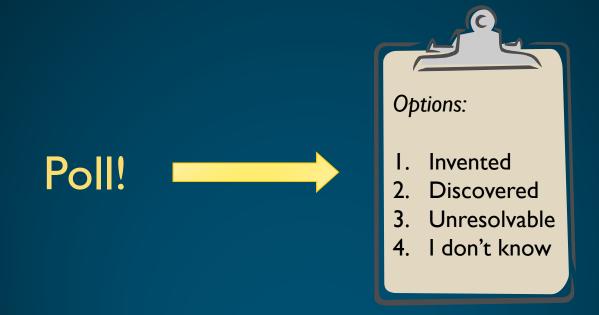


Aristotle



Plato

Is mathematics invented or discovered?



$\int f(x) dx \sqrt{m}$ "Newton and Leibniz *invented* Calculus." conventions and symbols $\log_2 64$ invented! number system And if you think mathematics is discovered: if a mathematical theory goes undiscovered, does it truly exist?

IK arbitrary notation Is $2^{67} - 1$ prime or composite?

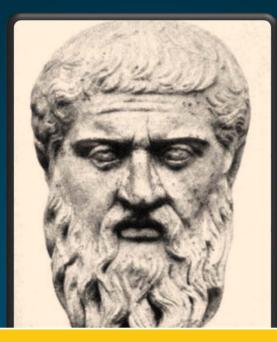
Are there an infinite number of "twin primes"?

discovered!

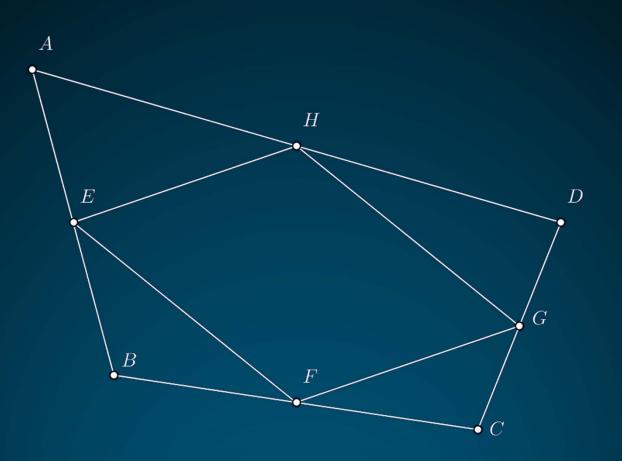
math is like science it's true, regardless of whether we discover it or not.

it or not. alf-tight logic

Correct answer...



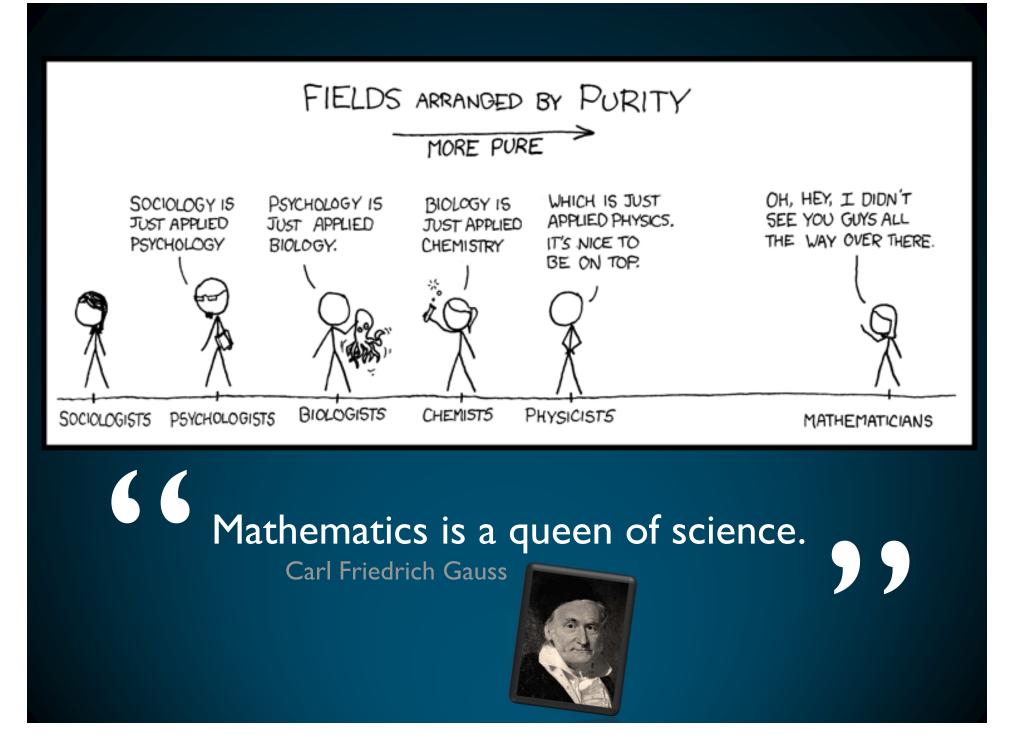
discovered!



Is this always true? Aren't you dying for a proof?

Is $9^n - 1$ always divisible by 8?

There exist two people in DC with the exact same number of hairs on their heads. Why?



what mathematicians have to say...

Wherever there is number, there is beauty.

Proclus

It is impossible to be a mathematician without being a poet in soul.

Sofia Kovalevskaya

The mathematician does not study pure mathematics because it is useful; he studies it because he delights in it and he delights in it because it is beautiful.

Jules Henri Poincaré

what mathematics are we free to invent?

the symbols and conventions we choose are arbitrary.

FORMALISM

Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert

the field axioms.

Closure of F under addition and multiplication

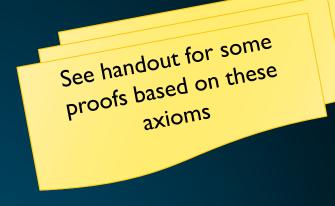
For all a, b in F, both a + b and $a \cdot b$ are in F (or more formally, + and - are binary operations on F).

Associativity of addition and multiplication

For all a, b, and c in F, the following equalities hold: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b)c$.

Commutativity of addition and multiplication

For all a and b in F, the following equalities hold: a + b = b + a and $a \cdot b = b \cdot a$.



Existence of additive and multiplicative identity elements

There exists an element of F, called the additive identity element and denoted by 0, such that for all a in F, a + 0 = a. Likewise, there is an element, called the multiplicative identity element and denoted by 1, such that for all a in F, $a \cdot 1 = a$. To exclude the trivial ring, the additive identity and the multiplicative identity are required to be distinct.

Existence of additive inverses and multiplicative inverses

For every a in F, there exists an element -a in F, such that a + (-a) = 0. Similarly, for any a in F other than 0, there exists an element a^{-1} in F, such that $a \cdot a^{-1} = 1$. (The elements a + (-b) and $a \cdot b^{-1}$ are also denoted a - b and a/b, respectively.) In other words, subtraction and division operations exist.

Distributivity of multiplication over addition

For all a, b and c in F, the following equality holds: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.

group

domain

Can we break or change the rules? YES. skewfield

ring

Abelian group

Epic math battles

Prove the thing! I want to create a formal system in which we can prove all statements.

David Hilbert

You can't prove the thing! In every formal system, there must be unprovable statements.

Kurt Gödel

Silly example

Axioms: it is raining outside.

if it is raining, I will take an umbrella.

Statements:

I will take an umbrella.

It is not raining outside.

I will take my pet hamster as well.

Provably true.

Provably false.

Undecidable

Math is useful

It's like a gorgeous painting that also functions as a dishwasher! Ben Orlin

But...WHY is it useful?

Why study math?

Liberal Education

Glimpsing the mind of God

In summary...

Math is different. It allows *certain* knowledge.

